Assignment 2: Planning for Effective Integration of Technology in the Curriculum

Ana Paez

School of Education, Nova Southeastern University

IDT 77914 - Curriculum, Teaching, and Technology

Dr. Judith Converso

July 14th, 2025

Introduction

In today's classrooms, students increasingly expect technology-facilitated learning activities that are not easily accommodated through traditional instruction (Kim, 2016). To meet these expectations, teachers have recognized the need to adapt conventional lessons by using technology integration frameworks. These frameworks not only help identify the level of technology use in the classroom but also support the design of lessons that incorporate technology to enhance student autonomy and engagement.

Frameworks such as the Technology Integration Matrix (TIM)(Appendix A) and the ASSURE model are valuable tools that enable teachers to achieve these objectives. The Technology Integration Matrix provides a clear structure for evaluating and improving the use of technology in the classroom. Similarly, the ASSURE model offers a systematic approach for planning effective, technology-rich lessons (Smaldino, 2019). By leveraging these models, educators can follow a step-by-step process to develop lessons that are both engaging and pedagogically sound in their use of technology.

The purpose of this paper is to create a lesson plan that effectively integrates technology at a higher level within the context of teaching quadratic functions in the IB Mathematics

Applications and Interpretation course. A partner-based activity will be incorporated to enhance classroom engagement and foster student autonomy. In this activity, students will choose topics of personal interest, collect data, analyze a quadratic model, and interpret their findings within a real-world context. This approach aligns with higher levels of the Technology Integration Matrix, particularly in terms of promoting active, authentic, and collaborative learning, surpassing the level currently implemented in my classroom.

Current Level of Technology Integration

In the IB Mathematics Applications and Interpretations course, I currently use Google Slides daily to deliver lessons through the Smart Board and share these materials via Google Classroom for easy access on students' devices. This approach supports electronic notetaking and provides a consistent structure for instruction. However, students often remain passive learners during these lessons, as I primarily lead the instruction and provide real-world connections through my examples. Although students may choose between tools like Desmos or the TI-84 calculator, the learning experience is still largely teacher-directed rather than student-driven.

According to the Technology Integration Matrix (TIM), my instruction falls at the Adoption level for Active, Constructive, Authentic, and Goal-Directed Learning, and at the Entry level for Collaborative Learning. Students use technology in structured and guided ways, applying prior knowledge through tools like Desmos and solving real-world problems using calculators and graphing platforms. While students engage with meaningful content and reflect on their learning, these activities are mainly directed by the teacher.

Plan for Higher Technology Integration

After reviewing the current level of technology integration in my classroom while teaching quadratic functions, I identified specific characteristics that need to be strengthened to enhance student motivation and promote greater autonomy in the learning process. To address this, I plan to incorporate a partner activity that will allow students to explore quadratic functions through a topic of interest. Working in pairs, students will create a model and a presentation in which they will collect data, determine the quadratic model that best fits the data, identify all key characteristics of the model, and interpret their meaning within the context of the chosen topic. For this lesson, students are encouraged to select the form of technology of their choice.

Below is a description of the characteristics and the corresponding levels I aim to reach by incorporating this new activity into the lesson.

Active Learning – Adaptation Learner

At this level, students work independently with technology tools in conventional ways; the teacher acts as a facilitator toward learning and does not need to guide students step-by-step through activities (Florida Center for Instructional Technology, 2019b). At this stage, my plan is for students to work with a partner and apply quadratic functions to a topic of interest. They will use the technology of their choice to determine the features of the quadratic functions and explain what they represent in the context. It is essential to note that I will guide them through this process. However, they will have complete autonomy in deciding both the topic and the technology used to develop exploration.

Authentic Learning – Adaptation Level

At this level, students choose and explore a topic of personal interest, allowing them to take ownership of their learning. They begin to use technology independently in meaningful ways, and teachers design instruction that intentionally integrates technology tools to support learning beyond the classroom setting (Florida Center for Instructional Technology, 2019e). As mentioned earlier, in this lesson, students will select a real-world situation of their choice that can be modeled using a quadratic function. This not only promotes relevance and engagement but also helps students see the practical applications of mathematics in everyday life.

Through this activity, students will have the opportunity to connect a mathematical concept to a topic they are passionate about and share their findings with their peers through a Google Slides presentation of their choice. In addition, students will reflect on the entire process,

what they discovered, how they applied quadratic functions to real-world data, and how

technology supported their exploration.

ASSURE Lesson Plan

Lesson Title: Modeling Real-World Problems with Quadratic Functions

Lesson Length: 80 minutes

Analyze Learners

General Characteristics

The learning environment consists of 11th-grade students enrolled in the IB Mathematics

Applications and Interpretations course at GP Upper School. The students are typically between

16 and 17 years old. These students engage with a mathematics curriculum that emphasizes

conceptual understanding and real-world application, which can sometimes present challenges.

However, as noted by Zenging et al. (2012), such challenges can be addressed through the

thoughtful implementation of specific technologies in the classroom.

Entry Competencies

Students in the course pass through a recommendation process where teachers from the

previous year recommend them. Some students enrolled come from Geometry, and others

come from Algebra 2. Those from Algebra 2 have already seen the concept of quadratic

functions. However, those from Geometry are required to attend a readiness course where

they learned all the fundamental concepts covered in Algebra 2 that are prerequisites for

the IB Math Applications and Interpretations. Therefore, students already understand the

concept of quadratic equations.

- The school is a Bring Your Own Device (BYOD) school. Since it is an independent school, having students with no electronic devices is not an issue. If the student does not bring an electronic device, the school provides one.
- All students are familiar with the use of electronic presentations such as PowerPoint,
 Google Slides, and Canvas.

Learning Differences and Needs

Students are more engaged when technology is used. It has also been identified that students are more involved in the learning process when they take ownership of their learning and work collaboratively with others. The majority of students have not been identified with learning disabilities. However, those who present them, the only required learning accommodation is 50% extended time.

Standards and Objectives

ISTE 6.C: Students communicate complex ideas clearly and effectively by creating or using a variety of digital tools such as visualizations, models or simulations.

- Objective: Students will communicate the quadratic model that describes a chosen real-world situation through oral presentations, using digital tools such as Google Slides,

 PowerPoint, or Canvas.
- **ISTE 4.A**: Students select and use digital tools to plan and manage a design process that considers designs constratints and calculated risks.
 - **Objective:** Students will work in pairs to create a quadratic model that best represents a real-world situation of their choice by using digital tools (e.g., Desmos, spreadsheets, or the TI-84 graphing calculator).

Select Strategies and Resources

Strategies

The selected strategies for this lesson include both teacher-centered and student-centered approaches. The teacher-centered strategies involve reviewing prior knowledge of quadratic functions, having students complete a brief Google Form for practice, and facilitating a whole-class discussion where selected students solve problems on the board and receive feedback from peers and the teacher. The student-centered strategies begin with a teacher-guided introduction to a mini exploration. Students then choose partners, select a real-world topic of interest, collect and analyze data using digital tools, and use their electronic devices to create and deliver presentations interpreting their quadratic model.

Select Resources

This lesson involves the continued use of Google Slides via the smartboard and accessing assignments through electronic devices. The lesson also requires the use of digital tools that enable students to find the quadratic model that best fits their data and create a presentation to share with the rest of the class.

Select Materials

A Google Sheet has been created for practicing quadratic functions, along with a corresponding Google Slides presentation that outlines the tasks students are expected to complete during their presentations. The grading criteria (Appendix B) have been adapted from those used in other presentations.

Utilize Technology, Media, and Materials

Preview Resources

Technology: SMART board and TI-84 calculator

Media: Google Slides, Google Form

Prepare the Environment

The lesson will take place in a regular classroom, where students are expected to bring

their electronic devices. It is essential to contact the Instructional Technology department to

explore ways they can support the lesson in the event of internet connectivity issues.

Prepare the Learners

To prepare students, I explain the upcoming lesson in advance, so they know what to

expect. At the start of the lesson, I review the agenda and begin with a refresher on the relevant

mathematical concept.

Provide the Learning Experience

I guide students by explaining what they are expected to complete by the end of the

lesson and support them as they use technology to find the best-fitting quadratic model and

prepare their presentations.

Learner Participation

Practice

At the beginning of the lesson, students are encouraged to come up to the board and share

their answers from the Google Form. Those who remain seated stay engaged in the learning

process by checking their own responses and providing feedback to their peers at the board.

When working on their presentation, students should first agree on a topic of common interest to

begin the assignment. They must also decide which technological tools they are both most comfortable using to identify the quadratic model and create the presentation.

Feedback

I provide feedback during student presentations not only to support the presenters but also to help the entire class learn from the comments and apply them to future presentations. All feedback is recorded on the grading criteria sheet (Appendix B), and final grades are shared with students during the next day's office hours.

Evaluation and Revision

Reflection of Learner Achievement and Technology Rating Scale

To evaluate student performance, I use the grading criteria outlined in Appendix B. The requirements are divided into five categories, with a total possible score of 20 points.

Evaluation of Strategies and Resources

I engage in informal conversations with students while they work to gain insight into their understanding of the content and their comfort with using digital tools during the activity. Additionally, students are asked to complete a Student Feedback Survey (Appendix C) at the end of the lesson to provide feedback on the activity. My own observations, along with the feedback from students, help me make adjustments and improve future lessons. It is important to note that not all lessons will be identical, as they must be adapted to meet the diverse characteristics and needs of the learners.

References

- Kim, D., & Downey, S. (2016). Examining the Use of the ASSURE Model by K–12 Teachers.

 *Computers in the Schools, 33(3), 153–168.

 https://doi.org/10.1080/07380569.2016.1203208
- Florida Center for Instructional Technology. (2019). *Technology Integration Matrix*. University of South Florida. https://fcit.usf.edu/matrix/
- Smaldino, S. E., Lowther, D. L., & Russell, J. D. (2019). *Instructional technology and media for learning* (12th ed.). Pearson
- Zenging, Y,. Furkan, H., & Kutluca, T. (2011). The effect of dynamic mathematics software GeoGebra on student achievement in teaching of trigonometry. *Procedia Social and Behavioral Science 31*, 183-187. https://doi:10.1016/j.sbspro.2011.12.03

Appendix A

The Technology Integration Matrix Table of Summary Descriptors

The Technology Integration Matrix (TIM) provides a framework for describing and targeting the use of technology to enhance learning. The TIM incorporates five interdependent characteristics of meaningful learning environments: active, collaborative, constructive, authentic, and goal-directed. These characteristics are associated with five levels of technology integration: entry, adoption, adaptation, infusion, and transformation. Together, the five characteristics of meaningful leand five levels of technology integration create a matrix of 25 cells, as illustrated below.

LEVEL

The teacher begins to

use technology tools to deliver curriculum content to students.

ADOPTION LEVEL

The teacher directs students in the conventional and procedural use of technology tools

ADAPTATION

The teacher facilitates the students' explora-tion and independent use of technology tools.

INFUSION LEVEL

The teacher provides the learning context and the students choose the technology tools.

TRANSFORMATION LEVEL

The teacher encor the innovative use of technology tools to facilitate higher-order learning activities that may not be possible without the use of technology.

ACTIVE LEARNING

Students are actively engaged in using technology as a tool rather than passively receiving information from the technology.

Active Entry

Information passively received

Active Adoption

procedural use of tools

Active Adaptation

Conventional Indonondant uso of tools; some student choice and exploration

Active Infusion

Choice of tools and regular, self-directed

Active Transformation

Extensive and

COLLABORATIVE LEARNING

Students use technology tools to collaborate with others rather than working individually at all times.

Collaborative Entry

individual student use of technology tools

Collaborative Adoption

Collaborative use of tools in conventional

Collaborative Adaptation

Collaborative use of tools; some student choice and exploration

Collaborative Infusion

Choice of tools and regular use for collaboration

Collaborative Transformation

peers, outside experts. and others in ways that may not be possible without tech ypology

CONSTRUCTIVE LEARNING

Students use technology tools to connect new information to their prior knowledge rather than to passively receive information.

Constructive Entry

Constructive Adoption

Guided, conventional use for building knowledge

Constructive Adaptation

Independent use for building knowledge; some student choice and exploration

Constructive Infusion

Choice and regular use for building knowledge

Constructive Transformation

Extensive and unconventional use of technology tools to build knowledge

AUTHENTIC LEARNING

Students use technology tools to link learning activities to the world beyond the instructional setting rather than working on decontextualized assignments.

Authentic Entry

Technology use unrelated to the world outside of the instructional setting

Adoption

Guided use in activities with some meaningful

Authentic Adaptation

Independent use in activities connected to students' lives; some student choice and exploration

Authentic Infusion

Choice of tools and aningful activities

Authentic Transformation

innovative use for higher-order learning activities connected to the world beyond the instructional setting

COALDIRECTED LEARNING

Students use technology tools to set goals, plan activities, monitor progress, and evaluate results rather than simply completing assignments without reflection.

Goal-Directed Entry

Directions given; step-by-step task

Goal-Directed Adoption

Conventional and procedural use of tools to plan or monitor

Goal-Directed Adaptation

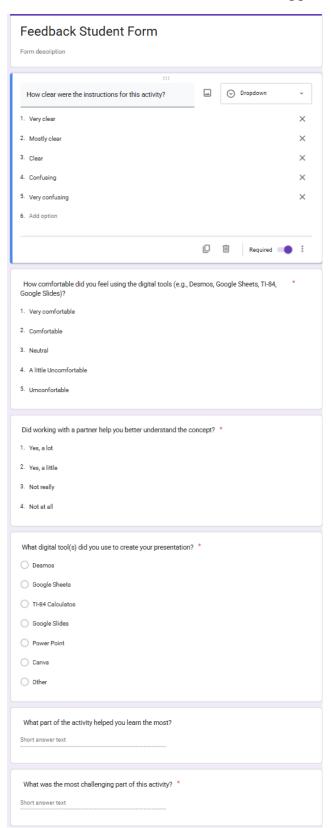
Purposeful use of tools to plan and monitor; some student choice and exploration

Goal-Directed Infusion

Flexible and seamle use of tools to plan and monitor

Gnal-Directed Transformation

Extensive and higher-order use of tools to plan and monitor


The Technology Integration Matrix was developed by the Florida Center for Instructional Technology at the University of South Florida, College of Education. For more information, example videos, and related professional development resources, visit http://myteshmatrix.org. This page may be reproduced by schools and districts for professional development and pre-service instruction. All other use requires written permission from FCIT. © 2005-2019 University of South Florida

Appendix B

Mini Exploration Grading Criteria

	A: Presentation (4) This criterion assesses the organization and coherence of the exploration. A well-organized exploration includes an introduction, has a rationale (which includes explaining why this topic was chosen), describes the aim of the exploration and has a conclusion. A coherent exploration is logically developed and easy to follow. Graphs, tables and diagrams should accompany the work in the appropriate place and not be attached as appendices to the document.	B: Mathematical Communication (4) - use appropriate mathematical language (notaton, symbols, teminology) - define key terms, where required - use multiple forms of mathematical representation, such as formulae, diagrams, tables, charts, graphs and models, where appropriate. Students are expected to use mathematical language when communicating mathematical ideas, reasoning and findings. Students are encouraged to choose and use appropriate ICT tools such as graphic display calculators, screen shots, graphing, spreadsheets, databases, drawing and word-processing software, as appropriate, to enhance mathematical communication, to	C: Personal engagement (3) This criterion assesses the exem to which the student engages with the exploration and makes it their own. Personal engagement may be recognized in different attributes and skills. These include thinking independently and/or creatively, addressing personal interest and presenting mathematical ideas in their own way.	D: Reflection (3) This criterion assesses how the student reviews, analyses and evaluates the exploration. Although reflection may be seen in the conclusion to the exploration, it may also be found throughout the exploration.	E: Use of mathematics (6) This criterion assesses to what extent students use mathematics in the exploration. Students are expected to produce work that is commensurate with the level of the course. The mathematics explored should either be part of the syllabus, or at a similar level or beyond. It should not be completely based on mathematics listed in the prior learning. If the level of mathematics is not commensurate with the level of the course, a maximum of two marks can be avarded for this criterion. The mathematics can be regarded as correct even if there are occasional minor errors as long as they do not detract from the flow of the mathematics or lead to an unreasonable outcome.
0	The exploration does not reach the standard described by the descriptors below.	The exploration does not reach the standard described by the descriptors below.	The exploration does not reach the standard described by the descriptors below.	The exploration does not reach the standard described by the descriptors below.	The exploration does not reach the standard described by the descriptors below.
1	The exploration has some coherence.	The exploration contains some relevant mathematical communication, which is partially appropriate.	There is evidence of limited or superficial personal engagement.	There is evidence of limited or superficial reflection.	Some relevant mathematics is used.
2	The exploration has some coherence and shows some organization.	The exploration contains some relevant appropriate mathematical communication.	There is evidence of significant personal engagement	There is evidence of meaningful reflection.	Some relevant mathematics is used. Limited understanding is demonstrated.
3	The exploration is coherent and well organized .	The mathematical communication is relevant, appropriate and is mostly consistent.	There is abundant evidence of oustanding personal engagement.	There is substantial evidence of critical reflection.	Relevant mathematics commensurate with the level of the course is used. Limited understanding is demonstrated.
4	The exploration is coherent, well organized, concise and complete.	The mathematical communication is relevant, appropriate and consistent throughout.			Relevant mathematics commensurate with the level of the course is used. The mathematics explored is partially cornect. Some knowledge and understanding are demonstrated.
5					Relevant mathematics commensurate with the level of the course is used. The mathematics explored is mostly correct. Good knowledge and understanding are demonstrated.
6					Relevant mathematics commensurate with the level of the course is used. The mathematics explored is correct. Thorough knowledge and understanding are demonstrated.

Appendix C

Appendix D

Peer Review Form

Type of Review	LESSON PLAN
Title of Lesson	Modeling Real-World Problems with Quadratic Functions
Designer/Author Name	Ana Paez
Peer Reviewer Name	Chirstopher Horne

Criteria	Peer Review Comments	Designer/Author Revisions (why or why not)
COVER PAGE INCLUDED 1. Introduction 2. Current Level of Technology Integration and Plan for increasing the level	 Cover Page is included and formatted correctly; introduction outlines plan for lesson clearly and includes a note about a partner-based activity as well. Plan is well-detailed, organized in an order that is clear and capable of being replicated by a peer. 	 Mentioning the partner activity in the introduction is important, as it is key to moving toward a higher level of technology integration. The purpose of this paper is to provide a resource that any of my colleagues can use. Having a well-detailed plan is imperative so that others can understand and support the proposed changes in technology use.
 3. Lesson Plan (based on the ASSURE Model) a. Analyze Learners: b. State (Standards if applicable) and Objectives: 	a. A brief summary that summarizes well the population of students you are teaching in the	3. I revised the <i>Analyze Learners</i> section and included what students

c. Select Strategies (Select Media lesson. are expected to do in the and Technology): course. I felt it was b. Supports the purpose of the d. Utilize Materials (Instructional important to mention this lesson Activities): in the lesson plans so the e. Require Learner Participation c. Each section is well-detailed reader can see how the (Practice & Feedback): and aligns with an ITSE standard. instructional decisions f. Evaluation (Assessment of align with course Learners) and Revision (Self d. Outlined and easy to locate in Reflection for continuous expectations. the lesson plan improvement): e. Student participation in lessons, especially by allowing them to come to the front of the classroom is fun and interactive. f. I like that you share your feedback out loud so that the feedback can benefit others students. 4. References 4. One reference was 4. Properly cited and using a **5.** Appendices hanging indent included because it was Peer Review Form (Reminder cited in the Analyze 5. Rubric for assignment is wellthis completed by peer and Learners section. author detailed and specific so student Assessment Tool Chart know who to maximize their points. 5. All needed Appendices are included, including the Peer Review Form. **Additional Comments** Peer Reviewer: While math is scary Designer: I understand how subject for me, personally, this math can be intimidating lesson is interactive and allows for many people, which students to work with others. I think makes teaching the subject this is a great idea for a lesson plan. more challenging.

Explain below the steps you will take to self-reflect/evaluate how you taught the lesson (delivery of the lesson).

To evaluate how I delivered the lesson, I will reflect on how students interacted and how involved they were during the class. I will also review the feedback I provided during their presentations to ensure it was helpful and aligned with the lesson's goals. Most importantly, I will use the Student Feedback Survey to understand how students felt about the lesson and to find ways I can improve my teaching.